.

Achieving Performance on the Grid

Brian L. Tierney
Dan Gunter

Data Intensive Distributed Computing Group
Lawrence Berkeley National Laboratory

SC2000

.

Outline

e Intro

— Why performance analysis is critical for Grid applications
* Monitoring/instrumentation techniques

— what to monitor
e Analysis Tools

— NetLogger

» Techniques to optimize application performance in a WAN
environment

— TCP tuning techniques
 pipechar tool
— program design considerations
— async /O, etc.
* NetLogger Demo

SC2000

Overview crreeed) ..‘;l

* The Problem
— When building distributed systems, we often
observe unexpectedly low performance
« the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
* the applications
 the operating systems

« the disks or network adapters on either the sending or
receiving host

» the network switches and routers, and so on

e The Solution:

« Highly instrumented systems with precision timing
information and analysis tools

SC2000

.

Bottleneck Analysis recceed]
y

 Distributed system users and developers often
assume the problem is network congestion

— This is often not true

* In our experience tuning distributed applications,
performance problems are due to:

— network problems: 40%
— host problems: 20%
— application design problems/bugs: 40%
* 50% client , 50% server
* Therefore it is equally important to instrument the
applications

SC2000

.

Monitoring f\|\\|

* Monitoring of Applications and Resources is essential
in a Grid Environment

* Monitoring Data is needed for:
— performance analysis
— performance tuning
— debugging
» Also for Advanced Grid Services
— prediction systems (e.g.: NWS)
— Grid schedulers
— accounting
— service verification (e.g.: QoS)

SC2000

.

) s S A
What to Monitor?-

= hosts: report host stats; e.g.: CPU load, available memory, TCP
retransmits
could be layered on top of SNMP-based tools, running remotely
from the host being monitored
could also be used to monitor host configuration information,
= OS version, software package version, total memory, etc.
= networks: perform SNMP queries to a network device
& e.g..router or switch.
& processes: generate events when there is a change in process
status
& e.g.: process starts, dies normally, dies abnormally
= storage or I/O: report storage systems usage of disks or tapes
& information on block size, access time, seek time, etc.

SC2000

What to Monitor? (cont.) cereer] u‘il

= middleware: information about middleware services
such as directory and authentication servers

z applications: sensors can also be embedded inside
of applications.

#/generate events if a static threshold is reached (for
example, if the number of locks taken exceeds a
threshold),

Zsupon user connect/disconnect, upon receipt of a
UNIX signal, etc.

= Application sensors can also be used to collect
detailed monitoring data about the application to be
used for performance analysis.

SC2000

Network-aware Applications T\l\\l

* To optimally operate over Wide-Area networks, Grid
applications must be able to easily adapt to changing
network conditions.

— Must monitor the network (or use a monitoring
service)
— must use that information to:
» set TCP buffer size
» set number of parallel streams
* efc.

— Much more on this later

SC2000

The NetLogger Toolkit

SC2000

NetLogger Toolkit reen) u‘il

* We have developed the NetLogger Toolkit (short for

Networked Application Logger), which includes:

— tools to make it easy for distributed applications to log
interesting events at every critical point

— tools for host and network monitoring

* The approach is novel in that it combines network, host,
and application-level monitoring to provide a complete
view of the entire system.

* This has proven invaluable for:
— isolating and correcting performance bottlenecks
— debugging distributed applications

SC2000

NetLogger Components Fﬁ\\l

* NetLogger Toolkit contains the following components:
— NetLogger message format
— NetLogger client library (C, C++, Java, Perl, Python)
— NetLogger visualization tools
— NetLogger host/network monitoring tools

* Source code and binaries are available at:
— http://www-didc.lbl.gov/NetLogger/

» Additional critical component for distributed applications:

— NTP (Network Time Protocol) or GPS host clock is
required to synchronize the clocks of all systems

SC2000

Key Concepts creen) u‘il

» NetLogger visualization tools are based on time
correlated and/or object correlated events.

* NetLogger client libraries include:
— precision timestamps (default = microsecond)

— ability for applications to specify an “object ID” for related
events, which allows the NetLogger visualization tools to
generate an object “lifeline”

End Processing

Begin Processing [

End Read I I

Event

Begin Read

Request data /

time

SC2000

NetLogger Message Format T\l\\

* We are using the IETF draft standard Universal Logger
Message (ULM) format:
« a list of “field=value” pairs
e required fields: DATE, HOST, PROG, and LVL
—DATE = YYYYMMDDHHSS.SSSSSS
—PROG: program name
—LVL is the severity level (Emergency, Alert, Error, Usage, etc.)
« followed by optional user defined fields
e http://www.ietf.org/internet-drafts/draft-abela-ulm-05.txt

* NetLogger adds this required fields:

¢ NL.EVNT, a unique identifier for the event being logged
—e.g.: SERVER_IN, VMSTAT_USER_TIME,
NETSTAT_RETRANSSEG

SC2000

.

NetLogger Message Format T\'\J

» Sample NetLogger ULM event:

DATE=19980430133038. 055784 HOST=f o0o. | bl . gov
PROG=t est prog LVL=Usage NL. EVNT=SEND_DATA
SEND. SZ=49332

— This says program named testprog on host foo.lbl.gov
performed event named SEND_DATA, size = 49332
bytes, at the time given

* User-defined data elements (any number) are used to
store information about the logged event - for example:
» NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

¢ NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

SC2000

When to use NetLogger coee) u‘il

* When you want to:

— do performance/bottleneck analysis on distributed
applications

— determine which hardware components to upgrade
to alleviate bottlenecks

— do real-time or post-mortem analysis of applications

— correlate application performance with system
information (ie: TCP retransmission's)

» works best with applications where you can follow a
specific item (data block, message, object) through the
system

SC2000

When NOT to use NetLogger T\'\]

* Analyzing massively parallel programs (e.g.: MPI)

— Current visualization tools don’t scale beyond
tracking about 20 types of events at a time

* Analyzing many very short events

— system will become overwhelmed if too many
events

— we typically use NetLogger to monitor events that
take > .5 ms

— e.g: probably don’t want to use to instrument the
UNIX kernel

SC2000

NetLogger AP -:;ﬁﬂ

* NetLogger Toolkit includes application libraries for
generating NetLogger messages
— Can send log messages to:
* file
* host/port (netlogd)
* syslogd
* memory, then one of the above

* C, C++, Java, Fortran, Perl, and Python APIs are
currently supported

SC2000

netlogd -::ﬁpq

» Use netlogd to collect NetLogger messages at a central
host

— use to avoid the need to sort/merge several log files

from several places

Network 3

Y|

v |

Network 2

Network 1

netlogd

N J

NetLogger data

SC2000

Logging to Memory ceeeeed] ;

* The NetLogger client library includes an option to buffer log
messages in memory:

— useful if monitoring bursts of events with a duration <1 ms
* Flushing of events to disk or network will occur:

— automatically when specified memory block full

— when calling NetLoggerFlush()

— when calling NetLoggerClose()

» Size of memory buffer specified by NL_MAX_BUFFER in

netlogger.h
— default = 10,000 messages (typical message size is 128
bytes)
NetLogger API Fﬁ\\l

¢ Only 6 simple calls:
— NetLoggerOpen()

e create NetLogger handle
— NetLoggerWrite()

e get timestamp, build NetLogger message, send to destination
— NetLoggerGTWrite()

e must pass in results of Unix gettimeofday () call
— NetLoggerFlush()

« flush any buffered message to destination

— NetLoggerSetLevel()

* set ULM severity level

— NetLoggerClose()
« destroy NetLogger handle

SC2000

10

1

.

NetLogger Open Call oy u‘il

DEsELEY LAE

NLhandle *lp = NULL;
Ip = NetLoggerOpen(char *program_name, char *dest_url, int flags);

e program_name: name to be inserted into ULM “program” field
» dest_url: destination of log file; valid URLs formats include:

— file://pathffile

— X-netlog://host:port

— x-syslog://localhost
 flags: bitwise “or” of the following:

— NL_MEM: buffer in memory

— NL_ENV: destination must be specified by the NL_DEST_ENV
environment variable; NetLogger is off if this variable not found

— NL_APPEND: append to existing log file

SC2000

.

NetLoggerOpen() shell =2

* Enable/Disable logging:
setenv NETLOGGER ON {true, on, yes, 1}: dologging
setenv NETLOGGER ON {fal se, off, no, 0}: do notdo logging

e Log Destination: set env NL_DEST_ENV | oggi ng desti nati on
Examples:
setenv NL_DEST_ENV file://tnp/netlog. | og
write log messages to file /tmp/netlog.log
setenv NL_DEST_ENV x- netlog://| oghost.| bl .gov

send log messages to netlogd on host loghost.Ibl.gov, default port
setenv NL_DEST_ENV x- netl og://Il oghost.| bl . gov: 6006
send log messages to netlogd on host loghost.lbl.gov, port 6006

e NL_DEST_ENV overrides the URL passed in via the NetLoggerOpen()
call.

SC2000

11

Typical Use ceeeeed] ;

» Using the environment variables, application and middleware
developers don't have to worry about command line arguments
or middleware APIs to enable/disable logging.

« Example: middleware includes the following call:
Net Logger Open(“ gl obus”, NULL, NL_ENV);

— Default behavior: logging is off
— If user sets “NL_DEST_ENV” to a valid log destination, then logging
will be turned on
« Example: client includes the following call:
Net Logger Qpen(“ny_app”, “file://tnmp/nyapp.log”, 0);
— Default behavior: logging is on
— If user sets: NETLOGGER_ON = of f: Logging is disabled

SC2000

.

NetLogger Write Call recceed]
gger Wr

» Creates and Writes the log event:

Net Logger Wite(nl, *“EVENT_NAME",
“EVENTI D=% F2=% F3=% F4=% 2f", id,
user _data, user_string, user float);

— timestamps are automatically done by library

— the “event name” field is required, all other fields are
optional

— this call is thread-safe: automatically does a mutex lock
around write call (compile time option)

* Example:

Net LoggerWite(nl, “HTTPD. START DI SK_READ’,
“HTTPD. FNAME=% HTTPD. HOST=%", f nane,
host nane) ;

SC2000

12

Sample NetLogger Use coeeed] f

| p = Net Logger Open(prognane,
x-netlog:// 1 oghost.|bl.gov, 0);

whi l e (!done)
{

Net Logger Wite(l p, "EVENT_ START"
"TEST. S| ZE=%", si ze);

/* performthe task to be nonitored */
done = do_sonet hi ng(data, size);
Net Logger Wi te(l p,

"EVENT_END') ;
}

Net Logger Cl ose(| p);

SC2000

NetLogger Event “Life Lines” TEI\J

End Processing

Begin Processing /]

End Read ’ I

Begin Read /
Request data / /

Event

time

SC2000

Event ID

creares ..‘1

=TT -u-.-.n.

* In order to associate a group of events into a “lifeline”,
you must assign an event ID to each NetLogger event

e Sample Event Ids
— file name
— block ID
— frame ID
— user name
— host name
— combination of the above
— etc.

SC2000

Sample NetLogger Use with

I p = Net Logger Open(prognane, NULL, NL_ENV);
for (i=0; i< numblocks; i++) {
Net LoggerWite(lp, “START_READ’,
“BLOCK_| D=% BLOCK_SI ZE=%l", i, size);
read_bl ock(i);
Net LoggerWite(lp, “END_READ',

“BLOCK_| D=% BLOCK_ Sl ZE=%", i, size);
Net LoggerWite(lp, “START_PROCESS’,
“BLOCK_| D=% BLOCK_SI ZE=%", i, size);

process_bl ock(i);
Net Logger Wite(lp, “END_PROCESS",

“BLOCK_| D=% BLOCK_SI ZE=%l", i, size);
Net LoggerWite(lp, “START_SEND’,
“BLOCK_| D=% BLOCK_SI ZE=%l", i, size);

send_bl ock(i);
Net LoggerWite(lp, “END_SEND',
“BLOCK_| D=% BLOCK_SI ZE=%l", i, size);

}
Net Logger Cl ose(| p);

crreres ..‘1

SC2000

14

NetLogger Host/Network Tools T\]\\l

* Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format

— netstat (TCP retransmissions, etc.)
— vmstat (system load, available memory, etc.)
— iostat (disk activity)

— ping

* These tools have been wrapped with Perl programs which:
— parse the output of the system utility
— build NetLogger messages containing the results

SC2000

Sample NetLogger System et

« Example: nl_vmstat -t 60 -d 5000 -m 2 logger.Ibl.gov

— Perl program will exec vmstat every 5 seconds for 1
hour, and send the results to netlogd on host
logger.Ibl.gov

— Generates the following information:
e CPU usage by User
e CPU usage by System

* NetLogger Messages:
DATE=19990706125055. 891620 HOST=port noy. | bl . gov
PROG=nl _vmstat LVL=Usage NL.EVNT=VMSTAT_USER TI ME
VNB. VAL=9
DATE=19990706125055. 891112 HOST=port noy. | bl . gov

PROG=nl _vmstat LVL=Usage NL. EVNT=VMSTAT_SYS TI ME
VMNB. VAL=5

SC2000

15

.

NetLoggerized tcpdump T\]\\l

* Precise real-time monitoring of TCP events on a per stream bases
— TCP retransmits
— TCP window size

* Example:
— tcpdump -Atcp and host piggy.ittc.ukans.edu and port 23

» Generates the following NetLogger data:

— DATE=20000419171039.78654 HOST=piggy.ittc.ukans.edu PROG=tcpdump
LVL=ErrorNL.EVNT=TCPD_REXSEG SN=145
SRC_HOST=falcon.cc.ukans.edu SRC_PORT=23
DST_HOST=piggy.ittc.ukans.edu DST_PORT=2800

e http://www.ittc.ukans.edu/projects/enable/tcpdump

SC2000

NetLogger Visualization Tools T\'\J

» Exploratory, interactive analysis of the log data has proven
to be the most important means of identifying problems

— this is provided by nlv (NetLogger Visualization)

* nlv functionality:
— can display several types of NetLogger events at once
— user configurable: which events to plot, and the type of
plot to draw (lifeline, load-line, or point)
— play, pause, rewind, slow motion, zoom in/out, and so
on
— nlv can be run post-mortem or in real-time

* real-time mode done by reading the output of netlogd as it is
being written

SC2000

16

1

NLV Graph Types

frerrrnon |q

* nlv supports graphing of “points”, load-lines, and

lifelines

event |

event | N o load-line

point

evert E /
aevent D I I lifeline
event C
event B
event A "
me
SC2000

Title

Events

Max window sige

NLV Scr

eenshot

T TR e
o TLE_FEAD -

T TLE_Fen-|
T_FECAIERT_AEMT u
APP_RECEE -

[P ST _WRITE

DrEEEND_FEAD -
PS5 _ETART_PEAD -|

TP

D6 e WSS AT

D, URSTER_|H

AP _ENT |

k FRETAT_LISER T
NAISTAT_ SV T WV

-

—
Menu bar

Zoom box

. I._..w'T—#..G’“‘""" ~N Scale for load-line/
et :\ﬁ\points
I I
|

e Time axis

/Legend

Playback speed
| Zoom-box actions
Playback controls

——Zoom window

controls

SC2000

17

.

NLV Configuration

NLV is very flexible, with many options settable in the
configuration file.

Format:
eventset +/-eventset_nane {

{ type <line, point,|oad> }

{id{ list of UUMfield names used to determ ne which
Net Logger nessages get grouped into the sane graph
primtive } }

{ group { list of UMTfield nanes which will be napped to
the same color } }

{ val field_name mn_val max_val }

{ annotate { list of field nanmes to display in with annotate
option } }

{ events { list of all event IDs in this lifeline} }

}
Each nlv graph object needs to be defined by an “eventset”

Events and event-sets both use "+" and "-" to indicate default
(i.e. on startup) visibility

SC2000

.

Example NLV Configuration T\l\\l

display vnstat info as a “loadline’

event set +VMSTAT {

{ type load }

|l oadl i ne constructed from nessages with the same HOST and NL. EVNT
{ id { HOST NL.EVNT } }

nessages with the same HOST get the sane col or

{ group HOCST }

#list of NL.EVNT values in this set_

{ events { +VMBTAT_SYS Tl ME +VMSTAT_USER TI ME } }

}

display netstat TCP retransmits as a “point”

event set +NETSTAT {

{ type point }

ignore val ues outside the range 0 to 999

{ val NS.VAL 0.0 999.0 }

point constructed from nessages fromthe same HOST and PROG
{ 1d { HOST PROG} }

nmessages with the same HOST get the same col or

{ group HOST }

{ events { +NETSTAT_RETRANSSEGS } }

}

SC2000

18

display server data as a “lifeline”
event set +SERVER READ ({

{ type line }

l'ifeline constructed from messages fromthe same client
and server

id { CLIENT_HOST DPSS. SERV } }

nessages with the sane DPSS. SERV get the sane col or
group DPSS. SERV }

~ s o~ 3

events {
+APP_SENT
+DPSS_SERV_I N
+DPSS_START_READ
+DPSS_END READ
+DPSS_START_WRI TE
+APP_RECEI VE }

Example NLV Configuration T\|\\|

SC2000

How to Instrument Your e X
—— Application

* You'll probably want to add a NetLogger event to the
following places in your distributed application:

— before and after all disk I/O
— before and after all network 1/0
— entering and leaving each distributed component

— before and after any significant computation
e e.g.: an FFT operation

— before and after any significant graphics call
* e.g.: certain CPU intensive OpenGL calls

* This is usually an iterative process

— add more NetLogger events as you zero in on the
bottleneck

SC2000

19

Does NetLogger affect
application performance? i

* Only if you use it incorrectly, or log too much

* There are several things to be careful of when doing this
type of monitoring:

— If logging to disk, don’t log to a nfs mounted disk
* best to log to /tmp, which may actually be RAM (Solaris)

— Probably don’t want to send log messages to a slow
(i.e.: 10BT) or congested network, as you'll just make
it worse

* log to a local file instead

SC2000

NetLogger Case Studies

SC2000

20
2

Example: HPSS Storage Manager e

* NetLogger was used to test and verify the results of a
Storage Access Coordination System (STACS) by
LBNL’s Data Management Group

* STACS is designed to optimize the use of a disk
cache with an HPSS Mass Storage system, and tries
to minimize tape mount requests by clustering related
data on the same tape

* NetLogger was used to look at:
— per-query latencies

— to show that subsequent fetches of spatially
clustered data "hit" in the cache.

* (http://gizmo.lbl.gov/sm/)

SC2000

STACS Instrumentation Points T\'\J

Client Monitoring Points:
— A) request arrives at HPSS
B) start transfer from tape
C) tape transfer finished
D) file available to client

E) file retrieved by client
Cach HPSS > : :
ache 'E F) file released by client

Tape Storage

SC2000

S

NLV for STACS: Tracking File ’\]

File Display Bookmarks Help

MetLogger Visualization

s

B_BEQUEST_ABRIV —!

Reguests i _“\']

mnnnnn znnnnnn 3000000
time({ms)
00 Status: Paus _I _I ! _I _I | 2 00
V Window €s) o nnalgsis
A | | | | 3570.0 W Stop on EOF
0.0 357 W Skip to data
SC2000

Tracking Files and System Performance @ sreeess

Wme Options

]

SC2000

22

Example: Parallel Data Block ,_\]

Server

» The Distributed Parallel Storage Server (DPSS)
— provides high-speed parallel access to remote data

— Unique features of the DPSS:

* On a high-speed network, can actually access remote
data faster that from a local disk

—70 MB/sec (DPSS) vs 22 MB/sec (local disk)

* Only need to send parts of the file currently required over
the network

—e.g.: client may only need 100 MB from a 2 GB data set
—analogous to http model
* NetLogger was used for performance tuning and
debugging of the DPSS

SC2000

.

DPSS Cache Architecture T\'\\J

data blocks

Client Application

Parallel

data blocks
DPSS Server

[= H Parallel
——]]
Disks

DPSS Server

Logical Block data blocks

Requests

D
Parallel
Disks

DPSS Master

logical to physical
block lookup
access control
load balancing

DPSS Server

& &

SC2000

23

NetLogger Results for the DPSS _ "
gger Resu =

TCF _rwiramc

Ep e dve

P = : o __ .':'-I..- T A
FEl Bl [et o e e
&

sart_write
wile e
end_resd
2_ vk read
oy srary_read

imﬂdqﬂm@
b sV R
el franl
Ead_aut

e xiale

;
J

F: tira for 2 biocka tr pot from arm most jeunand romsarr ane sore dhas
e by e pplosion rexde e b rare

£ 3 H
! ®
B 3 Black ooy trmspni i Jll Fetagih af 1w p Vel qenyon
neel transil II- -— g 5 -n-| i f phekr” (e g § oho Mmoo
ok e
app_semd PPN b i
L E tuss ta atied 20 Bleaks Mo fas daks 1 L2 L
— okt 2% e, weg 15w —
! £ (37 i) . Time [ms)
SC2000

NetLogger Results for the DPSS

APP_RECETYE |-

0PSS_START_URTTE ||
DPS3_END_RERD |-~
OPSS_START READ -~
DRSS _SERY_IN ||
OPSS_MASTER_OUT |- -

DPSS_MASTER_IN [---3

Il Il Il Il Il |
2.34 2.36 2.38 2.4 242 2.44 2.46 2.458

— dpzzd.lbl.gov —— dpzsz. 1bl.gow —— dpzzS.lbl.govw ——
E— —
SC2000

24

NetLogger Results for the DPSS | > .
over a WAN

b bl s B 'll:rnrv_l'l.ll By~ a Shmpek”
"k ri ket lag” —= nsers_fTeh g™ kg el
“mmsutrpnna by’ ——— ‘gl = iish kT - g ™. —
TCP retrams - ’ "
apjp Peceive
y s '-._,_,———'_
f I e
start write | o 1 1 :

el read

wiart read
|

server In
mARber ot

|
masier in
wpp wend

n 1.0 20 ERL 4,0 E 000
time (s}
SC2000

DPSS Performance: Used NetLogger |~~~ .

Storage Cluster
(DPSS)

Compute Cluster
(8 nodes)

Total Throughput (single dataset to a single cluster application):
570 Mbits/sec (71 MB/sec) on 32 data streams (17 Mbits/sec/stream)

1000 BT 1000 BT
i—OC-lz _.—00-48—;

Berkeley Lab:
.75TB, 4 server
DPSS

NTON Oakland
POP

Sandia Livermore Lab
Linux Cluster (CPlant)

SC2000

25

2!

Example: NLV of DPSSwitha | —
HENP client oeee)]

[Dessciey Ll
= W e Wi e =
-”-ql-n - - g - [-
T]-H.rdo-{ lﬂ &|JN‘M J fi
noss a‘|e\ ol aiiilly
4] e n] T P

SC2000

Example: Babar data analysis: 2 F\I
_ niactivity B ___\.]

Run-10462-3-33-12-31 Modes 50 and 125 only

e —] FOF EEEEREEREENER Y
MO E=E
e P O=Eva g PR SICS Evenls_rwT5A_shewld_e_trealed by 0mer_omcess
serenn_gci — 2

w1

el 1 W _L_Hjﬁﬁ-ﬁ_lﬂh"’

| | I|I"I|_.””::~'-'-""’f

SC2000

Example: Matisse Project coceend]

=

Compute Cluster
B nades)

1080 BT

151 East (Arington, WA)
Liruee Cluster

SC2000

Example: Combined Host and

—Application Monitoring ____

TCPD_RETRANSMITS

MPLAY_END_PUT_IMAGE

MPLAY_START_PUT_IMAGE

MPLAY_END_READ_FRAME

MPLAY_START_READ_FRAME

)

VMSTAT_USER_TIME

VMSTAT_SYS_TIME =

VMSTAT_FREE_MEMORY

Time (seconds) 310

dpss5.1bl.gov
dpss4.lbl.gov

311 312 313 314 315 316 317 318
mems.cairn.net —— dpss2.1bl.gov
dpss3.1bl.gov
SC2000

27

Example: NetLogger of ncftp | —=, .
client . I

* ncftp client on a

10BT ethernet
° ncftp Cllent ona e ‘ | ” ‘H“WW “ !} ” “
1000BT ethernet i it s e

SC2000

Current/Future NetLogger Work F\|\\J

* Binary format (faster!)
¢ XML format (slower!!)
* Publish/Subscribe API

— Producer X
+ NetLoggerPublish(“MONITORING_EVENT_NAME”, ...)
— Consumer Y
+ NetLoggerSubscribe(X, “MONITORING_EVENT_NAME”, ..)

SC2000

28
2

Getting NetLogger rreee)]

* Source code and binaries are available at:
— http://www-didc.lbl.gov/NetLogger

* Client libraries run on all Unix platforms

» Solaris, Linux, and Irix versions of nlv are currently
supported

SC2000

Part 2:
Network and TCP Performance
Issues

SC2000

29
2!

How TCP works:
A very short overview e

» Congestion window (cwnd)
— The Larger the window size, higher the throughput
e Throughput = Window size /Round- trip Time
* Slow start
— exponentially increase the congestion window size until a
packet is lost
« this gets a rough estimate of the optimal congestion
window size
» Congestion avoidance
— additive increase: starting from the rough estimate, linearly
increase the congestion window size to probe for additional
available bandwidth
— multiplicative decrease: cut congestion window size
aggressively if a timeout occurs

SC2000

.

TCP Overview

» Fast Retransmit: retransmit after 3 duplicated acks (got 3
additional packets without getting the one you are waiting for)

— this prevents expensive timeouts

— no need to slow start again
e At steady state, cwnd oscillates around the optimal window size
* With a retransmission timeout, slow start is triggered again

patket loss

CWND A

slow start:
exponential
increase -

“congestion
avoidance:
linear
increase

retransmit:
slow start

» time

SC2000

30

TCP Performance Tuning Issues F\,l\\l

» Getting good TCP performance over high-latency high-
bandwidth networks is hard!

* You must keep the pipe full, and the size of the pipe is
directly related to the network latency
— Example: from LBNL to ANL, there is an OC12 network,
and the one-way latency is 25ms
* Bandwidth = 67 MB/sec (OC12 - ATM / IP headers = 539 Mb/s)
— Need 67 Mbytes * .025 sec = 1.7 MB of data “in flight” to
fill the pipe

SC2000

Setting the TCP buffer sizes F\|\\J

* lItis critical to use the optimal TCP send and receive
socket buffer sizes for the link you are using.

— if too small, the TCP window will never fully open up

— if too large, the sender can overrun the receiver, and
the TCP window will shut down

» Default TCP buffer sizes are way too small for this type
of network

— default TCP send/receive buffers are typically 24 or
32 KB

— with 24 KB buffers, can getonly 2.2% of the
available bandwidth!

SC2000

31

Importance of TCP Tunin ..._:1.. .
P uning

S Tuned for ~ Tuned for Tuned for
£ 300 LAN WAN Both
= 264 264
0
= 200
5 152
o
= 112
g 100 112
3 44
E
= 64KB TCP 512 KB TCP
Buffers Buffers

B LAN (tt = 1ms)
B WwAN (tt = 50ms)

SC2000

TCP Buffer Tuning o]

DLHEELEYT LA#

» Must adjust buffer size in your applications:
int skt, int sndsize;
err = setsockopt(skt, SO._SOCKET, SO SNDBUF,
(char *)&sndsi ze, (int) si zeof (sndsi ze));
and/or
err = setsockopt(skt, SOL_SOCKET, SO RCVBUF,
(char *)&sndsi ze, (i nt) si zeof (sndsi ze));

* Also need to adjust system max and default buffer

— Example: in Linux, add to /etc/rc.d/rc.local
echo 8388608 > / proc/sys/ net/cor e/ wrem nax
echo 8388608 > /proc/sys/ net/corel/ rmem nmax
echo 65536 > / proc/ sys/ net/core/rmem def aul t
echo 65536 > / proc/ sys/ net/core/wrem def aul t

* For More Info, see: http://www-didc.Ibl.gov/tcp-wan.html

SC2000

32

D .. h B ff 1 ||r_:r_ll |||
etermining the Buffer Size m

* The optimal buffer size is twice the bandwidth*delay
product of the link:

buffer size = 2 * bandw dth * del ay

* The ping program can be used to get the delay

— €.0.. portnoy. | bl. gov(60)>ping -s |xplus.cern.ch 8192
64 bytes from | xplus012.cern.ch: icnp_seg=0. tine=175. ns
64 bytes from | xplus012.cern.ch: icnp_seg=1. tine=176. ns
64 bytes from | xplus012.cern.ch: icnp_seg=2. tine=175. ns
* pipechar or pchar can be used to get the bandwidth of the
slowest hop in your path. (see next slides)

* Since ping gives the round trip time (RTT), this formula
can be used instead of the previous one:

buffer size = bandwidth * RTT

SC2000

Buffer Size Example corren) u‘il

e ping time =50 ms
» slowest network segment = 10 Mbytes/sec (e.g.: the

end-to-end network consists of all 100 BT ethernet
and OC3 (155 Mbps)

e TCP buffers should be:
— .05 sec *10 =500 KBytes.

* Remember: default buffer size is usually only 24KB,
and default maximum buffer size is only 256KB !

SC2000

pchar rreee) u‘il

* pchar is a reimplementation of the pathchar utility,
written by Van Jacobson.

— http://www.employees.org/~bmah/Software/pchar/

— attempts to characterize the bandwidth, latency,
and loss of links along an end-to-end path

* How it works:

— sends UDP packets of varying sizes and analyzes
ICMP messages produced by intermediate routers
along the path

— estimate the bandwidth and fixed round-trip delay
along the path by measuring the response time for
packets of different sizes

SC2000

.

pchar details

* How it works (cont.)
— vary the TTL of the outgoing packets to get responses
from different intermediate routers.
» At each hop, pchar sends a number of packets of varying sizes
— attempt to isolate jitter caused by network queuing:
» determine the minimum response times for each packet size
» performs a simple linear regression fit to the minimum response
times.
 This fit yields the partial path bandwidth and round-trip time
estimates.
— To yield per-hop estimates, pchar computes the
differences in the linear regression parameter estimates
for two adjacent partial-path datasets

SC2000

34

Sample pchar output

pchar to webr.cern.ch (137.138.28.228) using UDP/IPv4

Packet size increments by 32 to 1500

46 test(s) per repetition

32 repetition(s) per hop

0: 131.243.2.11 (portnoy.Ilbl.gov)
Partial |oss: 0/ 1472 (0%
Partial char: rtt = 0.390510 ms, (b = 0.000262 ms/B), r2

stddev rtt = 0.002576, stddev b = 0.000003

Partial queueing: avg = 0.000497 ms (1895 bytes)

Hop char: rtt = 0.390510 nms, bw = 30505. 978409 Kbps

Hop queuei ng: avg = 0.000497 ns (1895 bytes)
1: 131.243.2.1 (ir100gwr2.1bl.gov)

Hop char: rtt = -0.157759 ns, bw = -94125. 756786 Kbps
2: 198.129.224.2 (Ibl2-gig-e.es.net)

Hop char: rtt = 53.943626 ns, bw = 70646. 380067 Kbps
3: 134.55.24.17 (chicagol- atns. es. net)

Hop char: rtt = 1.125858 ns, bw = 27669. 357365 Kbps
4: 206.220.243.32 (206.220. 243. 32)

Hop char: rtt = 109.612913 ns, bw = 35629. 715463 Kbps

SC2000

.

j__\| ..‘1

DEsELEY LAE

0. 992548

pchar output continued

5: 192.65.184.142 (cernh9-s5-0.cern. ch)

.

Hop char: rtt = 0.633159 ms, bw = 27473.955920 Kbps
6: 192.65.185.1 (cgate2. cern.ch)

Hop char: rtt = 0.273438 s, bw = -137328. 878155 Kbps
7: 192.65.184.65 (cgatel-dne. cern. ch)

Hop char: rtt = 0.002128 ms, bw = 32741. 556372 Kbps
8: 128.141.211.1 (b513-b-rca86-1-gh0. cern. ch)

Hop char: rtt = 0.113194 ms, bw = 79956. 853379 Kbps
9: 194.12.131.6 (b513-c-rca86-1-bbl. cern.ch)

Hop char: rtt = 0.004458 nms, bw = 29368. 349559 Kbps
10: 137.138.28.228 (webr.cern.ch)

Path | ength: 10 hops

Pat h char: rtt = 165.941525 ns, r2 = 0.983821

Pat h bottl eneck: 27473. 955920 Kbps

Pat h pi pe: 569883 bytes

Pat h queuei ng: average = 0.002963 ms (55939 bytes)

SC2000

35

pipechar ceeeerd) u‘il

* Problems with pchar:

— takes a LONG time to run (typically 1 hour for an 8
hop path)

— often reports inaccurate results on high-speed (
e.g.: > OC3) links.

* New tool called pipechar
— http://www-didc.lbl.gov/pipechar/

— solves the problems with pchar, but only reports the
bottleneck link accurately
« all data beyond the bottleneck hop will not be accurate

— only takes about 2 minutes to analyze an 8 hop path

SC2000

pipechar creen) u‘il

» Like pchar, pipechar uses UDP/ICMP packets of
varying sizes and TTL'’s.

+ Differences:

— uses the jitter (caused by router queuing)
measurement to estimate the bandwidth utilization
— uses a synchronization mechanism to isolate
“noise” and eliminate the need to find minimum
response times
* requires fewer tests than pchar/pathchar

— performs multiple linear regressions on the results

SC2000

36

3l

>pi pechar
From | ocal host :

1:

ETRTOT O NT o U AT W N

0:
1

.

Sample pipechar output o u‘il

i r100gwr 2.1 bl . gov
157. 295 Mops

| bl 2-gi g-e. es. net
159. 364 Mps

chi cagol- at ns. es. net
45. 715 Mops

46. 895 Mps
cernh9-s5-0. cern.ch

46. 330 Mops
cgate2.cern. ch

45, 348 Mops
cgat el-dne. cern. ch

46. 041 Mops

pdrd10. cern. ch
156. 522 Mops

b513- b-rca86- 1- gh0.cern. ch

45. 411 Mops

b513-c-rca86- 1-bbl.cern. ch

46. 911 Mops

r31-s-rca20- 1-gb7.cern. ch
9.954 Mops *** static bottle-neck 10BT

pcrdl10. cern. ch

nnmnn;;;“x

(157.6028 Mdps)
(131.243.2.1)
<4.9587% BW used>
(198.129. 224. 2)
<21. 5560% BW used>
(134.55.24.17)
<1.6378% BW used>
(206. 220. 243. 32)
<1.6378% BW used>
(192. 65. 184. 142)
<5. 9290% BW used>
(192. 65. 185. 1)
<10. 6760% BW used>

192. 65. 184. 65)
<10. 1195% BW used>
128. 141.211.1)
<23.0134% BW used>
(194.12.131. 6)
<9. 3956% BW used>
(194.12.129.98)

(137.138. 29. 237)

SC2000

.

Other Tools ceree?] u‘il

ﬂnﬂmﬂﬁ;;;Hx

iperf : tool for measuring end-to-end TCP/UDP performance
— http://dast.nlanr.net/Projects/Iperf/

traceroute: lists all routers from current host to remote host
— ftp://ftp.ee.Ibl.gov/
tcpdump: dump all TCP header information for a specified

source/destination

— ftp://ftp.ee.lbl.gov/

SC2000

37

tcptrace

.

 tcptrace: format tcpdump output for analysis using xplot

— http:/jjarok.cs.ohiou.edu/software/tcptrace/

— NLANR TCP Testrig : Nice wrapper for tcpdump and

tcptrace tools
* http://www.ncne .nlanr.net/TCPAestrig/

Sample use:

tcpdunp -s 100 -w /tnp/tcpdunp. out host hostnane

tcptrace -SI /tnp/tcpdunp. out
xpl ot /tnp/az2b_tsg. xpl

SC2000

tcptrace and xplot

X axis is time
Y axis is sequence number

— Data packets are indicated with double arrows

— Window and Acknowledgement numbers as staircases
Huge range of important scales

.

SC2000

38

Other Tools

* NLANR Tools Repository:
— Lots more network analysis tools
— http://www.ncne.nlanr.net/tools/

.

: F\l ..}l

SC2000

39
3!

Advantage of Parallel Transfers

14000
12000
TP Fhuffer
1bba0 Size
—— EFB
=— 16KB
Booo 2ER
]
—s— 10D KE
000 —— 00 KB
Z B0 KB
—— | rlﬂ

4noo

Fdilili}

Miiiribii of Parailnl S

1 Z 3 4 El B T L]] mn il 12 13 14

graph from Davide Salomoni, SLAC

SC2000

TCP WAN Performance: Host
—,SLLOS

O1 stream

2 streams
04 streams
6 streams

Network Performance
LAN WAN (65 ms RTT)
64KB buffers 64 KB buffers 4 MB Buffers
400
é 350 =
3 300 = =
a 250
=
<~ 200
]
2 150
S
3 100
é 50 A ” D i
0_ T T Ll
< < i 3
Y% % %% %% % %% 4
L % % 3% s B % % &
% . % 9%
. S
receive host

SC2000

40

A

Things to Notice in Previous e

Slide

» Parallel Streams help a lot with un-tuned TCP buffers

— and help a little with large buffers on Solaris

* Problems sending from a 1000BT host to a 100BT
Linux host

* Problems sending multiple streams to a 1000BT Linux
system, especially with cheap 1000BT hardware

SC2000

Other TCP Issues oy u‘il

* Things to be aware of:
— TCP slow-start

e On the LBL to ANL link, it takes 12 RTT’s to ramp up to full
window size, so need to send about 10 MB of data before
the TCP congestion window will fully open up.

— router buffer issues
— host issues

SC2000

41

.

TCP Slow Start -

— SC2000 —

Problems with TCP over NGl-like iy |
—Detworks

11:43:08 11:43:10 11:43:15 11:43;

SC2000

42

TCP Throughput on DARPA
SuperNet

Application Th hput
Throughput. {Hbits/sec) PP isakion fhroughpy

300

"result&lIZBk‘Ous" —

0 20 40 60 a0 100 120

time {units = sample #:; total time = 140 seconds?

SC2000

Another Network Performance .

* A common source of LAN trouble with 100BT networks is
that the host is set to full duplex, but the Ethernet switch is
set to half-duplex, or visa versa.

* Most newer hardware will auto-negotiate this, but with
some older hardware, auto-negotiation sometimes fails

— result is a working but very slow network (typically only
1-2 Mbps)

— best for both to be in full duplex if possible, but some
older 100BT equipment only supports half-duplex

SC2000

43

Application Performance Issues

SC2000

.

Other Techniques to Achieve

* Use multiple TCP sockets for the data stream
— if your receive host is fast enough
» Use a separate thread for each socket
» Keep the data pipeline full
— use asynchronous I/O
* overlap 1/0 and computation

— read and write large amounts of data (> 1MB) at a time
whenever possible

— pre-fetch data whenever possible
* Avoid unnecessary data copies
— manipulate pointers to data blocks instead

SC2000

44

Threaded Read: dpssRead() ,__\\]\l

dpssRead(dpss_file_descriptor, char *buffer, int size) ;

DEsELEY LAE

read buffer
(128 KB
blocks)
ad g read ad use block header to
re rea re determine where to
thread thread thread thread insert block into
buffer; no memory
copy required
Client
DPSS DPSS DPSS DPSS
Server Server Server Server
l
Disk Storage Disk Storage Disk Storage Disk Storage
SC2000

Use Asynchronous I/0 TEI\J

DLHEELEYT LA#

 1/O followed by Euemidniloros
processing %

» overlapped I/0O and
processing

almost a 2:1 speedup

SC2000

45

4

Throughput vs. Latency o u‘il

* Most of the techniques we have discussed are
designed to improve throughput

» Some of these might even increase latency

— with large TCP buffers, OS will buffer more data
before sending it out.

* Goal of a Grid application programmer
— hide latency

* However, there are some ways to help latency:
— use separate control and data sockets

— use TCP_NODELAY option on control socket

» But: combine control messages together into 1 larger
message whenever possible on TCP_NODELAY sockets

SC2000

.

Conclusions

e Tuning Grid Applications is hard!

— usually not obvious what the bottlenecks are
e Tuning TCP is hard!

— no single solution fits all situations

» need to be careful TCP buffer are not too big or too small

» sometimes parallel streams help throughput, sometimes
they hurt

SC2000

46
A

Conclusions ceeeend] ..‘;l

So what to do?

» design your grid application to be as flexible as possible
— make it easy for clients/users to set the TCP buffer

sizes
— make it possible to turn on/off parallel socket transfers
e probably off by default

» design your application for the future

— even if your current WAN connection is only 45 Mbps

(or less), some day it will be much higher, and these
issues will become even more important

SC2000

For More Information oy ;

Email:bltierney@Ibl.gov

http://www-didc.lbl.gov/NetLogger/
— download NetLogger components
— tutorial
— user guide

http://www-didc.Ibl.gov/tcp-wan.html
— links to all network tools mentioned here
— sample TCP buffer tuning code, etc.,

SC2000

a7

